ISSN 1600-5368

Léon Dupont,^a* Laurence Eyrolles,^b Guy Evrard,^c Jacques Delarge^b and Jean-François Liégeois^b

^aUnité de Cristallographie, Institut de Physique -Bât. B5, Université de Liège, Allée du 6 août 17, B-4000 Liège, Belgium, ^bService de Chimie Pharmaceutique, Institut de Pharmacie - Bât. B36, Université de Liège, Avenue de l'Hôpital 1, B-4000 Liège, Belgium, and ^cLaboratoire de Chimie Moléculaire Structurale, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium

Correspondence e-mail: leon.dupont@ulg.ac.be

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.044 wR factor = 0.122 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

8-Chloro-6-(3-dimethylaminopropylamino)-11*H*-pyrido[2,3-*b*][1,4]benzodiazepine

The crystal structure determination of the title compound, $C_{17}H_{20}ClN_5$, has been undertaken as part of studies on antipsychotic drugs. Its structure is compared with that of clozapine ($C_{18}H_{19}ClN_4$), a well known atypical antipsychotic drug. The side chain is more flexible than in the *N*-methylpiperazine analogues, but its folding is influenced by an intramolecular $N-H\cdots N$ hydrogen bond. The distances between the *N*-distal atom, a possible pharmacophore, and the centres of the two aromatic rings are significantly shorter than in clozapine. The crystal packing involves one $N-H\cdots N$ intermolecular hydrogen bond. The title compound showed no affinity for the receptors tested.

Comment

In the first part of our programme, biosteric analogues of dibenzoazepines were synthesized by modifying the tricyclic nucleus (Liégeois *et al.*, 1993, 1994). Later, new entities were further developed by modifying the *N*-methylpiperazine side chain either by varying the *N*-substituent or by replacing the piperazine ring by other nitrogen-containing rings or even by aliphatic diamines. The new compounds were used to explore the impact of such modifications on the binding affinities of these molecules for $D_{4.2}$, 5-HT_{2A} and D_{2L} receptors. The title compound, (I), showed no affinity for the receptors tested.

ompound,
tudies onReceived 4 December 2001Accepted 11 December 2001h that of
ipsychoticOnline 22 December 2001

Figure 1

The molecular structure of (I) with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.

between the N-distal atom and the the centres of the two aromatic rings are 4.754 (2) and 7.669 (2) Å in (I), and 5.972 (5) and 7.716 (5) Å in (II). In the crystal structure of (I), the side chain is more folded; in particular, D1 is shorter than in (II) and in other dibenzo- or pyridobenzoazepine derivatives. In the amidine moieties, the N=C double bond and C-N single bond are 1.295 (2) and 1.345 (2) Å in (I), and 1.293 (5) and 1.371 (5) in (II). The crystal packing is dominated by one intermolecular hydrogen bond, viz. N5- $H \cdot \cdot \cdot N12.$

Experimental

The title compound was prepared according to previously described methods (Liégeois et al., 1993) using a one-pot synthesis. A mixture of the lactam derivative, the corresponding amine, the titanium tetrachloride in toluene-anisole was refluxed for several hours. The product was extracted from the basic solution with chloroform and recrystallized from a methylene chloride/hexane mixture (Liégeois et al., 2002).

Crystal data

$C_{17}H_{20}ClN_5$ $M_r = 329.83$ Monoclinic, P_{2_1}/n a = 9.001 (1) Å b = 20.421 (3) Å c = 9.935 (1) Å $\beta = 109.545$ (6)° V = 1720.9 (4) Å ³ Z = 4	$D_x = 1.273 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 25 reflections $\theta = 20-23^\circ$ $\mu = 0.23 \text{ mm}^{-1}$ T = 293 (2) K Prism, yellow $0.50 \times 0.50 \times 0.50 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: none 7197 measured reflections 3511 independent reflections 3036 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$	$\theta_{\text{max}} = 26.3^{\circ}$ $h = 0 \rightarrow 11$ $k = -25 \rightarrow 25$ $l = -12 \rightarrow 11$ 3 standard reflections every 200 reflections intensity decay: 4%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.2131P]
$wR(F^2) = 0.122$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
3511 reflections	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
217 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 0.078 (4)
refinement	

Table 1 Selected geometric parameters (Å, °).

C4-N5	1.407 (2)	C13-N16	1.345 (2)
N5-C6	1.4127 (19)	N16-C17	1.450 (2)
C6-N7	1.330 (2)	C19-N20	1.474 (3)
N7-C8	1.342 (2)	N20-C21	1.440 (3)
C11-N12	1.407 (2)	N20-C22	1.459 (3)
N12-C13	1.2945 (19)		
C4-N5-C6	119.04 (13)	C13-N16-C17	124.69 (15)
C6-N7-C8	117.74 (15)	C21-N20-C22	109.25 (19)
C13-N12-C11	123.16 (13)	C21-N20-C19	113.98 (19)
N12-C13-N16	119.18 (15)	C22-N20-C19	108.4 (2)
C14-C4-N5-C6	-53.9 (2)	C13-N16-C17-C18	168.89 (18)
C4-N5-C6-C11	53.3 (2)	N16-C17-C18-C19	51.8 (3)
N5-C6-C11-N12	9.8 (2)	C17-C18-C19-N20	-68.2(3)
C6-C11-N12-C13	-40.5(2)	C18-C19-N20-C21	-71.8(2)
C11-N12-C13-N16	-179.23(15)	C18-C19-N20-C22	166.35 (19)
N12-C13-N16-C17	-3.2 (3)		

Table 2		
Hydrogen-bonding geometry (A	Å, '	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N5-H5\cdots N12^{i}$	0.87 (2)	2.49 (2)	3.332 (2)	162.9 (17)
$N16-H16\cdots N20$	0.82 (2)	2.08 (2)	2.787 (2)	145 (2)

Syr 2, 2

All H atoms (with the exception of the nitrogen-bound atoms H5 and H16) were included in the refinement in the riding-model approximation, with isotropic displacement parameters fixed at $1.2U_{eq}$ of the parent atom ($1.5U_{eq}$ for methyl H-atoms). Atoms H5 and H16 were refined isotropically, their displacement parameters being fixed at $1.2U_{eq}$ of the N atom. The two methyl groups were allowed to rotate about their local threefold axis.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

This work is partially supported by the 'Fonds National de la Recherche Scientifique (FNRS)' of Belgium and Therabel Research (Brussels, Belgium). JFL is a Research Associate of the FNRS and LE was granted a postdoctoral fellowship of the University of Liège.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Enraf-Nonius (1992). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Liégeois, J.-F., Bruhwyler, J., Damas, J., Nguyen, T. P., Chleide, E., Mercier, M., Rogister, F. & Delarge, J. (1993). J. Med. Chem. 36, 2107–2114.
- Liégeois, J.-F., Eyrolles, L., Carato, P., Bruhwyler, J., Géczy, J., Damas, J. & Delarge, J. (2002). J. Med. Chem. Submitted.
- Liégeois, J.-F., Rogister, F., Bruhwyler, J., Damas, J., Nguyen, T. P., Inarejos, M. O., Chleide, E., Mercier, M. & Delarge, J. (1994). J. Med. Chem. 37, 519–525.
- Petcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415–1420.

Sheldrick, G. M. (1997). *SHELXL*97. University of Göttingen, Germany. Spek, A. L. (1997). *HELENA*. Utrecht University, The Netherlands.